
A Genetic Representation for Evolutionary Fault

Recovery in Virtex FPGAs

Jason Lohn !, Greg Larchev I, and Ronald DeMara 2

1 Computational Sciences Division, NASA Ames Research Center,

biail Stop 269-1, Moffett Fietd, CA 94035-1000, USA

email: {jlohn, glarchev}@emaiI.arc.nasa.gov

2 S_d_l-ec_ic_l_SYngineering and Computer Science, University of Central

Florida, Orlando, FL 32816-2450
emaih demara@mail.ucf.edu

Abstract. Most evolutionary approaches to fault recovery in FPGAs

focus on evolvingMternative logicconfigurationsas opposed to evolving

the intra-cellrouting.Since the majority oftransistorsin a typicalFPGA

are dedicated to interconnect,nearly 80% according to one estimate,

evolutionary fault-recoverysystems should benefit by accommodating

routing.In thispaper,we propose an evolutionaryfault-recoverysystem

employing a geneticrepresentationthattakesintoaccount both logicand

routing configurations.Experiments were run using a software model of

the XflinxVirtex FPGA. "We reportthat usingfourVirtex combinational

logicblocks,we were ableto evolvea 100% accuratequadrature decoder

finitestatemachine in the presence of a stuck-at-zerofault.

1 Introduction

Numerous advantages of Field Programmable Gate Arrays (FPGAs) in space-

borne electronics have been identified in recent research publications [3, 15] and

manufacturers' literature [1, 16]. Benefits include reconfiguration capability to

support multiple missions, the ability to correct latent design errors after launch,

and the potential to accommodate on-chip and off-chip failures. Ground Support

Equipment (GSE) based FPGA applications primarily employ reprogrammable

devices as a means of amortizing development costs over multiple missions. In

GSE-enabled applications such as Reusable Launch Vehicles (RLVs), FPGAs

are configured or replaced between missions rather than being reprogrammed

during flight. For applications such as RLVs, comparatively short mission dura-

tions and low levels of ionizing radiation are involved. Hence for many ground

reconfigurable applications, conventional Triple Modular Redundancy (TMR)

techniques often provide sufficient fault handling coverage.

On the other hand, in-mission reconfigurable FPGAs are advantageous for

deep space probes, satellites, and extraterrestrial rovers. In these applications,

the radiation exposures, mission durations, and repair compleMties are signifi-

cantly greater. The need for adequate fault coverage during these missions has

become further intensified by the increasing number of FPGAs being deployed.

Forinstance,NASA'sStardustprobecontainsover100FPCAdevices.Although
theStardust'sFPCAsarebasedonanon-reprogrammableantifuse-basedtech-
nology,amorerecentspace-qualifiedSRAM-basedtechnologyhasbecomecom-
merciallyavailable.

In SRAM-baseddevices,thenumberof programmingcyclesis unlimited.
Hencenewtechniquesbecomefeasiblefor activerecoverythroughreconfigura-
tionofa compromisedFPGA.Theapproachdevelopedhereconcentrateson
autonomousreconfigurationofSRAM-baseddeviceswhilein-flight.Theexperi-
ments c o nd u c t e di_lgoJye_Xilimv' sSRAM.=- has ed3Zir_ ex-p ar tafr-om-t_he-samed erie e

family as the space-qualified QPRO radiation-hardened series.

Permanent Single-Event Latchup (SEL_ failures max, impact CLBs and/or

programmable interconnections within the FPGA itself. They may also involve

other supporting devices that the FPGA interfaces with or processes data from.

These failure modes also suggest that the ability to derive an alternative FPGA

configuration in-situ would be beneficial. Likewise, SEL exposures exist with re-

gards to the data processing path within the FPGA that is not involved with the

device's programmable configuration. In the above cases, the FPGA configura-

tion derived at design time will no longer provide the required functionality for

the damaged part. Traditionally, redundant spares have been utilized to replace

the d'amaged device.

Autonomous repair can work in concert with or provide an alternative to

device redundancy. While redundant spares exist oniy in limited quantities, evo-

lutionary recovery methods attempt to facilitate repair through reuse of dam-

aged parts. Hence the potential benefits are two-fold. First, one or more failures

might be accommodated by reconfiguring the failed part without incurring the

increased weight, size, or power traditionally associated with providing redun-

dant spares. Second, the characteristics of the failure need not be precisely diag-

nosed in order to be repaired. Here the repair is performed in-situ via intrinsic

evaluation of the device's remaining functionality. This implies that any resid-

ual functionality, including the electrical characteristics of both the damaged

device and its interaction with any supporting devices, is taken into account

when realizing the repair. After isolating the fault to a size that is manageable

for the evolutionary algorithm, alternate solutions are refined though iterative

selection. This can be carried out without detailed knowledge of the underlying
failure mechanism itself.

The approach developed here attempts to regain lost functionality due to

a fault by evolving a new configuration on the defective FPCA. We assume a

dual-redundant FPGA system whereby the faulty FPCA undergoes evolution

to recover its functionality while the redundant FPGA maintains proper func-

tionality during evolution on the faulty FPCA. Thus after a fault is detected,

redundancy is lost for a short period of time and then restored. Application

functionality is maintained throughout this process under the assumption that

only one of the FPCAs fails. Our results are that the evolutionary methods are

able to fully recover from a simulated stuck-at-zero fault in the input of a state

machineimplementingaquadraturedecoder.SeveralresearchchMlengesremain
andtheyarealsodiscussed.

2 Related Work

Recently, various evolutionary algorithm approaches have been proposed for

fauR-recovery of FPGAs. Some previous work applies evolutionary algorithms

prior to the occurrence of the fault while other approaches attempt to repair the

.fault--a-ft er-it s-occur r enee ._S ome-t ec ht_iques-invot-ve-int r ins ic-evotu_-ion-using-t-he

failed part itself. Others rely on extrinsic evolution of an abstracted model of

the devices.

Three examples of recent work that apply evolutionary algorithms to realize

fault-tolerant designs include [11], [4], and [13 i. In [11], Miller examined proper-

ties of messy gates whereby evolved logic functions inherently contain redundant

terms as their functional boundar.ies change and overlap. In [4], Canham and

Tyrrell compare the fault tolerance of oscillators evolved by including a range of

fault conditions within the fitness measure during the evolutionary process. A

population-based approach scores evolved designs using a fitness function corre-

sponding to desired operation based on the absence of faults. When evolution is

complete, an additional pass evaluates the ability of the evolved individuals to

tolerate a range of faults, and the most fault-tolerant individuals are retained.

In [13], the evolution of designs containing redundant capabilities without the

designer having to explicitly specify the redundant parts themselves was inves-

tigated. To achieve this, a range of fault cases was introduced throughout the

evolution process. This allowed individuals to exploit whatever component be-

haviors exist, even behaviors known to be faulty.

An evolutionary fault-recovery approach is described by Vigander [1@ He

deveIops a genetic algorithm to restore functionality after random faults are in-

jected into a 4-bit by 4-bit multiplier using standard genetic operators. He sim-

ulated the repair of the prior-designed multiptier that consisted of feed-forward

interconnection of hypothetical FPGA cells capable of 8 different logic functions.

He used as his fitness function the number of c-orrect input-output mappings from

the 256 possible input combinations that could be applied to the multiplier. He

demonstrated that while it is not exceedingly difficult to derive a solution that

can produce a nearly correct repair, comptetely correct repairs present a chal-

lenging problem. To remedy this, he demonstrated that a voting system with as

few as three alternativeiy evolved repaired ciicuits was capable of producing a

majority output that was completely correct.

3 Representation and Operators

Several goals were taken into account while designing the representation scheme.

Amenability to recombination is of course a primary concern. After that, our

priorities were to let the GA work in the largest, most flexible design space

as possible: we wanted to allow all possible LUT configurations and allow the

maximumnumberof CLBinterconnectionsgiventheconstraintsof hardware
routingsupport(wewillsaymoreabouttheroutingat theendofthissection).

Vv'e also wanted to disaltow illegal configur_tions and to minimize non-coding

alleles (introns).

Bitstring representations are a natural choice for FPGA applications, and

many times the raw configuration string can be used as the representation. In

our case, we chose a bitstring representation mainly out of convenience in pro-

gramming. Since we knew that only a handful of CLBs would be evolved, our

bitstzings_w_auld 3oestmaost_l(200_hi_!gng We acknowledge that this a__proach

would likely suffer as more CLBs were utilized and the corresponding bitstring

enlarged to thousands of bits.

The representation is shown in Figure 1. This scheme is comprised of multiple

128-bit fields, one for each CLB. Within each CLB field are a number of sub-

fields that specify each of the LUT bits and remote connections. There are 16

bits that specie" the contents of each LUT. Each LUT has four inputs, and

since each of these inputs can be connected to other LUT outputs, the remote

CLB/LUT requires addressing bits. Since our system will be comprised of four

CLBs, we need only two bits to specify the remote CLB, and another two bits to

specie" the particular LUT within the CLB. This pattern of sub-fields continues

for each LUT until all the LUTs in the CLB are accounted for. An illustration

of the CLBs, LUTs and sample routing is shown in Figure 2.

F---- Lur0 INpUTS---_ _ ,ur_ INPUrS---------_

I ,uTOSlTS I i "t
R-CLB = REMOTECLB

R-LUT = REMOTELUT

Fig. 1. Genetic representation used showir_g logic fields and routing fietds.

CLB 0 CLB 1 CLB n

Fig. 2. Example of routing among CL.Bs.

Theoperatorsemployedwerecrossoverandmutation.Two-pointcrossover
wasimplementedusingcutpointsallowedbetweenbit,s.Mutationwasapplied
onindividualbits.

Regardingtherouting,it ischosenautomaticallybytheJBitssoftware.Our
circuksaresu_cientlysmallthatwehaveneverexperiencedasituationwhere
aroutecouldnotbefound.Successfulrouteshavebe_,nfoundrouting1LUT
output to 48 different inputs (the maximum number of inputs available in a

2-by-2 circuit, where 1 CLB is dedicated to external inputs). It is theoretically

2ossible that in some larger designs the routing_ will become so dense that some

routes would not be found. If such a case were to occur, the specific route will

simply not get connected. Such individual would then most likely receive a low

fitness score, and be automatically eliminated from the gene pool.

4 Fault Recovery Of Quadrature Decoder

The quadrature decoder [2] was selected as an initial case study for .testing and

refinement of our evolutionary recovery strategy. It represents a NASA applica-

tion of manageable size that is appropriate for tuning of the CA. Quadrature

decoders provide a means of counting, objects passed back and forth through

two beams of light, or alternatively determining the angular displacement and

direction of rotation of an encoder wheel turning about its axis. A quadrature

decoder that determines the direction of rotation of a shaft is shown in Figure 3.

B-Channel _ B-Channel LED

Photo -Transistor _, /.

A-Channel _ _M:_ _

Photo -Transistor _ A-Channel LEO

!it
B-Channel LED A-Channel LED

Fig. 3. Rotating shaft application for a quadrature decoder.

The concept of operation for the quadrature decoder is that the objects, or

opaque arcs on the rotating wheel, to be counted will first obscure and then

move past the two light beams in succession. The order in which the beams are

cteared can be used to ascertain the direction of rotation. The use of two beams

acts to preclude false counts due to jitter or bounce resulting t_om multiple

phantom reads. For example, to have a valid increment in the rotational count,

both beams must be cleared in succession.

To implement the encoder, it is possible to employ a state machine that keeps

track of the beam activity. The state machine accepts two single-bit inputs which

are asserted only when the corresponding sensor is obscured. When a change of

the inputs occurs, the state machine transitionsto its next internal state. The

state machine isasyr_chronous and outputs a zero bit ifthe wheel is rotating in

one direction,and a one bit ifthe wheel isrotating in the opposite direction.If

the wheel isnot rotating;the output isthe same as itpreviously was. The finite

state machine for the quadrature decoder is shown in Figure 4.

Count Up

Ch A

o

o

Count Down

Ch B State

0 1

1 2

1 3

I o ,

Fig. 4. Quadrature decoder finitests.temachine.

5 Experimental Setup and Results

The software system used is depicted in Figure 5. The entire system is imple-

mented in software. The CA software is EC.I, a Java-based evolutionary com-

putation and genetic programming system by Sean Luke of George Mason Uni-

versity. ECJ is augmented by our code for tasks like decoding individuals and

calculating fitness. The GA sits on top of Xilimx Corporation's JBits software [5,

8]. a set of Java classes which provide an Application Programming Interface
to access the XililLx FPGA bitstream. Xilinx's Virtex DS software, which sim-

ulates the operation of Virtex devices, is used to test candidate solutions. Bor-

land's JBuilder Java environment is used for development and to run the system_

though Sun Microsystem's Java virtual machine is used beneath JBuilder.

To evaluate the fitness of an individual, an input stream of 500 bit pairs is

used. These inputs attempt to fully exercise the evolving finite state machines.

The quad decoder inputs are supplied at specified clock intervals, which have

nothing to do with how often the finite state machine changes state. The quad

decoder inputs can change at an), frequency below the frequency of the decoder

clock - they might never change (if the wheel is standing still), or they might

change at every clock cycle (if the wheel is rotating at the maximum allowed

velocity).

evaluate
1,

FPGA output

JBuilder simulated fault

Fig. 5. Software system.

The output stream consists of 510 bits sampled across all four CLBs. Ten

bits have been added to allow for the delay (in dock cycles) between the time the

decoder inputs are fed into the decoder, and :he time the output of the decoder

is read. Such arrangement allows us to read the output of the decoder from 1

to 11 clock cycles after the inputs have been fed into the circuit. Adding ten

bits gives ten output stream windows of length 500, with each output stream

shifted by 1-bit from the next. Sampling across all the CLBs allows the CA to

maximum flexibility in building the FSM. Thus, fitness is expressed as:

F= max (CLB_)
i=1,4;j=0,9

where CLB_ represents the number of correct output bits from the ith CLB

shifted by j clock ticks. The fitness is simply the highest number of correct

output bits seen across all of the CLBs and across the ten output windows. The

best score is 500, and the worst score is 0.

The genetic algorithm was set up as shown in Table 1. SmaI1 population

sizes were necessary since an unfixablememory leak was present in one of the

pre-compited modules.

Number of generations I000]l

Population size 40

Tournament Size 4

Elitist Individuals

Gen 0 Seeding 20 individuals

_Crossover rate 0.8

Mutation rate 0.002 per bit

Table 1. GA parameters.

Approximately 10 experimental runs were conducted using smaller input bit-

streams of 100 bit pairs. These were found to evolve finite state machines that

were tuned to the test cases, but not robust when interrogated with out of sam-

ple input test streams. Two runs were conducted using 500 bit pairs and one

these runs was able to evolve a I00_0 accurate quadrature decoder finitestate

machine in the presence of an induced fault.The location of the faultwas chosen

at random, although we made sure that it would adversely affect the function-

ality of the seeded circuits. Once the fault is present, we assume that it does

not get removed (however, if it does, our algorithm can start evolving the circuit

configuration again). We assumed that the circuit is operating properly prior to

the fault, and the evolution is started once the fault is detected.

The best evolved configuration was found in generation 623 and is shown in

Figure 6. Two of the 16 LUTs went unused which is not surprising given that

the FSM can be implemented with about 10 LUTs. The GA exploits the induced

fault to its advantage because if you remove the fault in the evolved solution,

it no longer functions correctly - it achieves an accuracy of only 93.8%. Also,

note that the input LUTs had mostly zeros in their tables. This is because we

f_x most of those bits to zero in the genome since they do not affect the LUT's

function. However, the "corner" bits of each of those input LUTs are involved

in processing the input, and therefore, are evolved.

The GA performance curve for this run is shown in Figure 7. The run ramps

up quickly showing that useful search is underway, however, the average fitness

is stagnant for about 300 generations, which is not encouraging. The runs are

quite slow to execute on a 2 GHz Pentium 4 PC. Runtimes were about 45 hours

since each evaluation takes approximately 6 seconds.

6 Discussion

Evolutionary systems for fault recovery on FPGAs may" be an important tool in

the quest for ever-higher levels of fault tolerance in NASA missions and other

applications. We have demonstrated a system that is able to evolve a realistic

spacecraft control function in the presence of a permanent stuck-at fault. Using

a software simulation of an FPCA, we constructed a genetic representation that

included both logic and routing information, and ran a genetic algorithm to

evolve a quadrature decoder. As is typical in ew)hitionary algorithm applications,

the evolved Solution exploits its resources in unexpected ways. In our case, the

algorithm made use of the fault itself in constructing its solution. If there is

economy" to be gained by exploiting damaged resources, that is certainly a benefit

largely unique to evolutionary search.

Potential advantages of this approach are handling a wider range of errors,

and relaxing the requirement of fault location/isolation. An autonomous fault

recovery system would be possible if the evolution could be done at sub-second

speeds. Future work includes investigation of scalability to more complex logic

functions and systems that have multiple induced faults. Speeding up the eval-

uation cycle by doing evolution directly in hardware is our next line of research.

Fault

(stuck-at-0)

MSB

Fig. 6. Evolved configuration showing routing, LUT contents, and simulated fault.

Inputs are on the lines labeled MSB and LSB, referring to the least/most significant bit

of the input (channel A and B inputs). Wires that are shown crossing perpendicularly

(eg, +) are unconnected - only wires that have 7 junctions are connected.

7 Acknowledgments

The authors would like to thank David Gwaltney of NASA Marshall Space

Flight Center for suggesting the quad decoder application, and Delon Levi of

Xilinx, Inc. for many helpful discussions. The research described in this paper

was performed at NASA Ames Research Center, and was sponsored by NASA's

Computing, Information, Communications, and Technology Program.

References

1. Actel Corporation, "Acre! FPGAs Make Significant Contribution To

Global Space Exploration," Press Release. August 30, 1999. available at:

http://www+acteI.com/company/press/1999pr/SpaceContribution.html

2. Agilent Technologies, Inc., Quadrature Decoder/Counter Interface ICs, Data Sheet
HCTL-2020PLC.

3. N. W. Bergmann and P. R. Sutton, "A High-Performance Computing Module

for a Low Earth Orbit Satellite using Reconfigurable Logic," in Proceedings of

500

480 (

460

40

420

400

S

380

36O

Fig. 7'. GA performance curve. The top curve is the best individual's fitness at each

generation and the bottom curve is the average fitness.

Military and Aerospace Applications of Programmable Devices and Technologies

Conference, September 15-16, 1998, GreenbelL MD.

4. R. O. Canham and A. M. Tyrrell, "Evolved Fault Tolerance in Evolvable Hard-

ware," in Proceedings of IEEE Congress on Evolutionary Computation, 2002, Hon-

olulu, HI.

5. S. Guccione, D. Levi, P. Sundararajan, "JBits: A Java-based Interface for Recon-

figurable Computing," 2nd Annual Military and Aerospace Applications of Pro-

grammable Devices and Technologies Conference (MAPLD).

6. P. Haddow and G. Tufte, "Bridging the Genotype-Phenotype Mapping for Digital

FPGAs," The Third NASA/Dod Workshop on Evolvable Hardware, pp. I09-i15

7. D. Keymeulen, A. Stoica, R. Zebulum, "Fault-Tolerant Evolvable Hardware using

Field Programmable Transistor Array's," [EEE Transactions on Reliability, Special

Issue on Fault-Tolerant VLS! Systems, Vol. 49, No. 3, September 2000, pp. 305-316.

8. D. Levi and S. Guccione, "GeneticFPGA: Evolving Stable Circuits on Mainstream

FPGAs," In Adrian Stoica, Didier Keymeulen, and Jason Lohn, editors, Proceed-

ings of the First NASA/DOD Workshop on Evolvable Hardware, pp. 12-17, IEEE

Computer Society Press, Los A]amitos, CA, July 1999.

9. J.D. Lohn, G.L. Haith, S.P. Colombano, D. Stassinopoulos, "A Comparison of

Dynamic Fitness Schedules for Evolutionary Design of Amplifiers," in Proceedings

of the First NASA/DoD Workshop on Evolvable Hardware, Pasadena, CA, IEEE

Computer Society Press, 1999, pp. 87-92.

10. D.C. :v[ayer, R. B. Katz, J. V. Osborn, J. M. Soden, "Report of the Odyssey FPGA

Independent Assessment Team," NASA/JPL, 2001.

11. J. F. Miller and M. Hartmann, "Evolving messy gates for fault tolerance: some pre-

liminary findings," in Proceedings of the Thizd NASA/DoD "Workshop on Evolv-

able Hardware, July 12-[4, 2001, Long Beach, CA.

12.M.Tahoori,S.Mitra,S.ToutounchLE.McCluskey,"F_mltGradingFPGAInter-
connect Test Configuration," in Proceeding,.; of [nt[Test Conference, 2002.

13. A. Thompson, "Evolving Fault Tolerant Syslems," in Proceedings of 1st IEE/IEEE

Intl Conference on Genetic Algorithms in Engineering Systems, IEE Conf. Pub.

No 414, pp 524-529, TBD Date, TBD Place.

14. S. Vigander, Evolutionary Fault Repair of F, lectronics in Space Applications, Dis-

sertation, Norwegian University of Science anti Technology, Trondheim, Norway,

February 28, 2001.

15. E. B. Wells and S. M. Loo, "On the Use of Distributed Reconfigurable Hardware in

LaLmch-C_ntr_-_y_nics_rL_P_ceedings-_f_D_gita_ _k-v_un_c_S-y"stems_nference_

TBD day/month, 2001, TBD location.

16. Xilimx Inc., "XilirLx Radiation Hardened Virtex FPGAs Shipping To JPL Mars

Mission And Other Space Programs," Press Release, May 15, 2001.

